Divide and Conquer: EKF SLAM in O(n)

نویسندگان

  • Lina María Paz
  • Juan D. Tardós
  • José Neira
چکیده

In this paper, we show that all processes associated with the move-sense-update cycle of extended Kalman filter (EKF) Simultaneous Localization and Mapping (SLAM) can be carried out in time linear with the number of map features. We describe Divide and Conquer SLAM, which is an EKF SLAM algorithm in which the computational complexity per step is reduced from O(n2 ) to O(n), and the total cost of SLAM is reduced from O(n3 ) to O(n2 ). Unlike many current large-scale EKF SLAM techniques, this algorithm computes a solution without relying on approximations or simplifications (other than linearizations) to reduce computational complexity. Also, estimates and covariances are available when needed by data association without any further computation. Furthermore, as the method works most of the time in local maps, where angular errors remain small, the effect of linearization errors is limited. The resulting vehicle and map estimates are more precise than those obtained with standard EKF SLAM. The errors with respect to the true value are smaller, and the computed state covariance is consistent with the real error in the estimation. Both simulated experiments and the Victoria Park dataset are used to provide evidence of the advantages of this algorithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Data Association in O(n) for Divide and Conquer SLAM

In this paper we show that all processes associated to the move-sense-update cycle of EKF SLAM can be carried out in time linear in the number of map features. We describe Divide and Conquer SLAM, an EKF SLAM algorithm where the computational complexity per step is reduced from O(n) to O(n) (the total cost of SLAM is reduced from O(n) to O(n)). In addition, the resulting vehicle and map estimat...

متن کامل

EKF SLAM is O(n)

In this paper we show that all processes associated to the move-sense-update cycle of EKF SLAM can be carried out in time linear in the number of map features. We describe Divide and Conquer SLAM, an EKF SLAM algorithm where the computational complexity per step is reduced from O(n) to O(n) (the total cost of SLAM is reduced from O(n) to O(n)). In addition, the resulting vehicle and map estimat...

متن کامل

Efficient Large Scale SLAM Including Data Association using the Combined Filter

In this paper we describe the Combined Filter, a judicious combination of Extended Kalman (EKF) and Extended Information filters (EIF) that can be used to execute highly efficient SLAM in large environments. With the CF, filter updates can be executed in as low as O(logn) as compared with other EKF and EIF based algorithms: O(n2) for Map Joining SLAM, O(n) for Divide and Conquer (D&C) SLAM, and...

متن کامل

Effects of Moving Landmark’s Speed on Multi-Robot Simultaneous Localization and Mapping in Dynamic Environments

Even when simultaneous localization and mapping (SLAM) solutions have been broadly developed, the vast majority of them relate to a single robot performing measurements in static environments. Researches show that the performance of SLAM algorithms deteriorates under dynamic environments. In this paper, a multi-robot simultaneous localization and mapping (MR-SLAM) system is implemented within a...

متن کامل

Free Vibration Analysis of Repetitive Structures using Decomposition, and Divide-Conquer Methods

This paper consists of three sections. In the first section an efficient method is used for decomposition of the canonical matrices associated with repetitive structures. to this end, cylindrical coordinate system, as well as a special numbering scheme were employed. In the second section, divide and conquer method have been used for eigensolution of these structures, where the matrices are in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Robotics

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2008